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The entropy HS characterizes a ‘disorder’ rather than a ‘complexity’ of convex 
n-acra. The first one is quite well characterized by s.p.g’s. The second one should 
distinguish n-acra of the same s.p.g. and different numbers of edges, for example, 
the overwhelming majority of combinatorially asymmetric n-acra for given n ≥ 7. 
To do this, the topological entropy НV is suggested, which considers the valences 
of vertices of n-acra. It classifies the variety of convex 4- to 9-acra in more details. 
It is proved that HV can reach 0 as minimum (for example, for regular and semi-
regular polyhedra,  as well as the infinite series of prisms and antiprisms), but 
never lg n as maximum, because there are no convex n-acra with all vertices of 
different valences. It is also proved that HS ≥ HV for any convex n-acron, i.e. for 
any n and s.p.g. HS = HV if the vertices non-equivalent under the automorphism 
group also have different valences, and HS > HV if not.
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Abstract
New tools to describe a convex polyhedron and their links to the recent theory 

of crystal morphology are discussed in the paper. Zero-polyhedra, i.e. those with a 0 
determinant of adjacency matrices of edge graphs, are found to prevail among convex 
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4- to 7-vertex polyhedra and have strong relationships between their edges. The case 
when some rows of adjacency matrices are identical is investigated in details with 
combinatorial types and symmetry point groups of related polyhedra found.

Synopsis
A special class of convex 0-polyhedra is defined, where determinants of adjacency 

matrices of edge graphs equal 0, with their combinatorial types and symmetry point 
groups found.

Key words
Convex polyhedra and polyacra, adjacency matrix, determinant, symmetry point 

group, automorphism group order.

1. Introduction
Crystal polyhedra are traditionally described in terms of symmetry. All 

combinatorial types of convex 4- to 12-hedra and simple (only 3 facets / edges 
meet at each vertex) 13- to 16-hedra have been enumerated and characterized by 
automorphism group orders (a.g.o.’s) and symmetry point groups (s.p.g.’s) in the 
papers (Voytekhovsky & Stepenshchikov, 2006; Voytekhovsky, 2014). It is found 
that asymptotically (with growing n) almost all convex n-hedra (and n-acra, i.e. 
n-vertex polyhedra, because of their duality) are combinatorially asymmetric (i.e. 
primitive triclinic). Hence, a problem arises: how to operate them if s.p.g.’s do 
not work? In the series of papers we investigate new tools to describe a convex 
polyhedron and their links to the recent theory of crystal morphology.

A general theory of convex polyhedra is given in Grünbaum (1967). 
Voytekhovsky (2016) has suggested a method of naming any convex n-acron by a 
numerical code arising from the adjacency matrix of its edge graph. The number 
of names for any convex n-acron equals n! / a.g.o. depending on labeling of 
vertices. They are connected with each other by permutations of the same-name 
rows and columns of the adjacency matrix. Such transformations do not change 
its determinant Δ, thus, being an important characteristic of a related polyhedron. 
Here we study combinatorial types and s.p.g.’s of convex polyhedra in a special 
case Δ = 0.
2. Determinants of convex 4- to 7-acra

The Δ values have been calculated for all convex 4- to 7-acra (Table 1). Zero-
polyhedra, i.e. those with Δ = 0, prevail among 5- to 7-acra (2 of 2, 4 of 7, and 
11 of 34, respectively). They have been extracted from the paper (Voytekhovsky, 
2016) and are shown in Fig. 1 in the Schlegel projections on a facet.

Table 1. Numbers of convex n-acra with different Δ values.
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3. Why 0?
Fig. 2 shows the two 5-acra with their adjacency matrices. It is easy to see 

that the 1st and the 2nd rows (and columns, hereinafter) of the matrix are identical 
for the trigonal dipyramid, because its vertices # 1 and # 2 are equally adjacent 
to the others. Even two pairs of the rows (1st and 2nd, 3rd and 4th) are identical 
for the tetragonal pyramid for the same reason. And it follows from the general 
properties of the determinants that Δ = 0 for such matrices. The above said can be 
generalized in the following statement.

Statement. Convex 0-polyhedra with identical rows of adjacency matrices 
form two endless series of “dipyramids” and “ridge-type” polyhedra. Only two 
0’s can be in identical rows, i.e. only two rows can be identical, i.e. only two 
vertices can be equally adjacent to the others. But, two (a tetragonal pyramid) and 
three (an octahedron) pairs of the identical rows are allowed.

Figure 1. 5- to 7-acra with Δ = 0. S.p.g.’s and ranks (r) of adjacency matrices are given.

Figure 2. A trigonal dipyramid and a tetragonal pyramid with their adjacency matrices 
related to the labeling of the vertices.
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Proof. Let the i-th and j-th rows of an adjacency matrix be identical. As its 
diagonal elements (i, i) = (j, j) = 0 then (i, j) = (j, i) = 0. That is, the i-th and j-th 
vertices of the n-acron are not adjacent. Consider, only two 0’s are in the i-th and 
j-th rows. That is, the i-th and j-th vertices are adjacent to all other. Fig. 3 shows 
the appropriate graph (centre). Let us transform it to a convex polyhedron by 
adding edges.

It is easy to see that we can build polyhedra of two types: (a) the “dipyramids”, 
if only triangular facets are allowed, and (b) the “ridge-type” polyhedra, if a 
quadrilateral facet is allowed. Only one quadrilateral facet is allowed in the latter 
case. Otherwise, two such facets form an edge (i, j). But, the i-th and j-th vertices 
are not adjacent. The above polyhedra (considered as n-acra) have the following 
s.p.g.’s: (a) 2m)4n2( −  (odd n ≥ 5), m3m (n = 6, an octahedron), (n-2)/mmm (even n 
≥ 8); (b) 4mm (n = 5, a tetragonal pyramid), mm2 (n ≥ 6).

Actually, only two 0’s can be in the identical i-th and j-th rows of the adjacency 
matrix. To prove it, let us try to add new vertices to the Schlegel projections (Fig. 
3 a, b). They are to be located inside the triangular (a, b) or quadrilateral (b) 
facets and adjacent to all vertices except the i-th and j-th. In the 1st case they are 
adjacent to two nearby vertices of a triangular facet. Besides, in the 2nd case they 
can be adjacent to two opposite vertices of a quadrilateral facet. In both cases the 
resulted graph is planar and 2-connected, i.e. not polyhedral (which is planar and 
3-connected).

4. A general case
In a general case Δ = 0, but there are no identical rows of the adjacency 

matrices. To characterize such polyhedra we use the concept of the matrix rank 
r, i.e. the maximum number of its linearly independent rows. Fig. 1 shows ranks 
of adjacency matrices of 5- to 7-vertex 0-polyhedra. Obviously, r < n for any 
n-vertex 0-polyhedron. In our case, n–2 ≤ r < n with the only exception of an 

Figure 3. Two types of 0-polyhedra with identical rows of adjacency matrices in the 
axonometric and Schlegel projections: (a) the “dipyramids”, (b) the “ridge-type” 
polyhedra.
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octahedron (r = n–3 = 3). Let us consider a trigonal prism (Fig. 4). Its four rows 
are independent. Hence, any two (n–r = 6–4 = 2) rows depend on the others. For 
example, the rows # 1, 2, 3, and 4 can be taken as independent. Then the rows # 
5 and 6 can be calculated.

5. Discussion
Convex 0-polyhedra of two types are distinguished, namely, with identical 

rows of adjacency matrices and without them.
5.1. Identical rows

These form two endless series of convex 0-polyhedra: the “dipyramids” 
(s.p.g.’s 2m)4n2( −  for odd n, s.p.g.’s (n-2)/mmm for even n; a special case – an 
octahedron: s.p.g. m3m , 3 pairs of identical rows), and the “ridge-type” polyhedra 
(s.p.g. mm2; a special case – a tetragonal pyramid: s.p.g. 4mm, 2 pairs of identical 
rows). All of them possess rather high symmetries. It looks naturally because in 
any case pairs of identical rows of the adjacency matrices relate to the symmetry 
plains of polyhedra.
5.2. No identical rows

The concept of the rank r of adjacency matrices is useful to describe such 
0-polyhedra. Obviously, r < n, i.e. only r rows of the adjacency matrices are 
independent, while n–r rows can be calculated. Note that two combinatorially 
asymmetric 0-polyhedra (s.p.g. 1, r = 6) are among 7-acra (Fig. 1). That is, linear 
dependence of the rows of adjacency matrices does not mean the polyhedra 
symmetry. The hypothesis looks plausible that r = n–1 or r = n–2 for any 
0-polyhedron with the only exception of an octahedron: r = n–3, where 3 relates 
to the dimension of the Euclidean space.
5.2.1. r = n–1

In this case any row of the adjacency matrix can be calculated from the others. 
At the same time, it can be easily found using its symmetry. The case looks trivial. 
But it is not, because many convex polyhedra have Δ ≠ 0 and, at the same time, 
symmetrical adjacency matrices.

Figure 4. 0-polyhedron with linearly dependent rows.
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5.2.2. r = n–2
More so for the case r = n–2. Here, two rows of the adjacency matrix cannot 

be found using its symmetry. But they can be calculated from the others. How 
to interpret this property? Fig. 4 shows that if four rows of the adjacency matrix 
(ex. # 1 to 4) are fixed, then only the elements (5, 6) and (6, 5) are unfixed. And 
(5, 6) = (6, 5) = 1 to guarantee the polyhedral property of the edge graph. This 
interpretation seems proper for any case r = n–2.
6. Conclusion

Suggested is the concept of convex 0-polyhedra, for which the determinants 
of the adjacency matrices of the edge graphs equal 0. The simplest case, when 
some rows of the adjacency matrices are identical, is investigated in details. Such 
0-polyhedra form two endless series: the “dipyramids” (s.p.g.’s 2m)4n2( −  for odd 
n, s.p.g.’s (n-2)/mmm for even n; a special case – an octahedron: s.p.g. m3m , 
3 pairs of identical rows), and the “ridge-type” polyhedra (s.p.g. mm2; a special 
case – a tetragonal pyramid: s.p.g. 4mm, 2 pairs of identical rows). The concept 
of the rank r of adjacency matrices is useful to describe a general case. In this 
case, n–r rows of adjacency matrices can be calculated from the others even for 
the combinatorially asymmetric 0-polyhedra. Thus, linear relations between the 
rows of adjacency matrices of convex 0-polyhedra are their fundamental property 
independent from the symmetry.
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Abstract
The “Rome de Lisle problem” on the vertex and edge truncations has been formulated 

and solved for all crystal closed simple forms (2, 8, 5, and 15 for orthorhombic, trigonal 
+ hexagonal, tetragonal, and cubic syngonies, respectively). The collections of simple 
forms obtained are enumerated and considered as special combinations of simple forms 
in symmetry classes.
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