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matrices of 8- to 11-acra corresponding to their min. names are in Fig. 4. (Note 
that they differ in one 1 for odd and even n).
4. Conclusions

The min. names are attainable for pyramidal convex n-acra with the 
following combinatorial s.p.g.: -43m for n = 4 (tetrahedron), (n-1)mm for odd n > 
4 and (n-1)m for even n > 4. The max. names are attained for convex n-acra of a 
«glued tetrahedrons» type with the following combinatorial s.p.g.: -43m for n = 4 
(tetrahedron), -6m2 for n = 5 (trigonal bipyramid) and mm2 for n > 5.

The above results allow us to directly calculate ranges of names [minn, maxn] 
for any n without generating the whole combinatorial variety of convex n-acra 
(ex., by the routine recurrence Fedorov algorithm) and calculating names for all 
of them. The ranges of names for n = 4 to 12 are as follows: [63, 63], [507, 1022], 
[7915, 32754], [241483, 2096914], [15062603, 268427538], [1902830667, 
68718960914], [484034528331, 35184305512722], [247052243600459, 
36028779906736402], [252590061511541835, 73786967515992695058].

All the names of the ranges [maxn + 1, minn+1 – 1] (ex., [64, 506], [1023, 
7914], [32755, 241482], etc.) obviously correspond to the adjacency matrices of 
non-polyhedral graphs. This sufficient but not necessary criterion seems to be new.
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Abstract
The formulas for the minimum (minn) and maximum (maxn) names in the classes of 

convex n-acra (i.e. n-vertex polyhedra) are found for any n. The asymptotic behavior (as 
n → ∞) for maxn+1/maxn, minn+1/minn, minn+1/maxn, and maxn/minn is established. They 
characterize in detail the accelerated scattering of [minn, maxn] ranges on a real line.
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Synopsis
The formulas for minn and maxn names in the classes of convex n-acra, as well 

as asymptotic relationships (as n → ∞) between them, are found. These explain the 
distribution of [minn, maxn] ranges on the real line.

Key words
Convex polyhedra and polyacra, minimum and maximum names, asymptotic 

relationships.

1. Introduction
A general theory of convex polyhedra is given in (Grünbaum, 1967). In a 

series of papers we considered a special problem on the combinatorial variety of 
convex n-hedra rapidly growing with n. A method of naming any convex n-acron 
by a numerical code arising from the adjacency matrix of its edge graph has been 
suggested by Voytekhovsky (2016). It has also been proved that the [minn, maxn] 
ranges of names for the classes of convex n-acra are strictly (without overlapping) 
ordered. The combinatorial types of convex n-acra with the minn and maxn names 
(of pyramidal and ‘glued tetrahedra’ types, respectively) have been found for 
any n by Voytekhovsky (2017). In this paper, the latter are calculated from the 
adjacency matrices of their edge graphs. Afterwards, some asymptotic (as n → ∞) 
relationships between the minn and maxn names are found. They explain in detail 
the distribution of [minn, maxn] ranges on a real line.

2. Maximum and minimum names of convex n-acra

Figure 1. Decomposition of the adjacency matrices (upper triangles are shown) 
corresponding to max. (top) and min. (bottom) names of 11-acra.
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The adjacency matrices of n-acra with minn and maxn names have been 
found by Voytekhovsky (2017, Figs 1, 3). Here, to find the names in an explicit 
algebraical form, we decompose the matrices into A, B, and C, D blocks (Fig. 1).

Exactly, in a general case, matrix A consists of the first three rows of the 
original adjacency matrix with 0’s in other positions while B is the original 
adjacency matrix minus A. In the same way, matrix C consists of the first two 
rows of the original adjacency matrix with 0’s in other positions while D is the 
original adjacency matrix minus C. Such decompositions (after many variants 
were checked) allowed us to find the minn and maxn names of n-acra in an explicit 
form and, moreover, to prove some relationships between them.
2.1. Formula for the maximum names

For rather big n (for which the adjacency matrices of the n-acra correspond 
to Fig. 1), maxn = An + Bn, where An and Bn can be found by using the properties 
of arithmetic and geometric progressions:

An = 10 ↑{[1 + 2 + … + (n-3)] – 2} × (1 + 101 + … + 102n-2) =

= 10 ↑ [(n2-5n+2)/2] × (102n-1 – 1) / (10 – 1),

Bn = 101 + 104 + … + 10 ↑{[1 + 2 + … + (n-4)] – 2} =

= 101 + 104 + … + 10 ↑ [(n2-7n+8)/2].

It is easier to find the bounds for Bn than its explicit algebraic form. In the 
decimal form, replacing 10 by 2:

maxn = 2 ↑ [(n2-5n+2)/2] × (22n-1 – 1) + Bn , where

Ḅn = 2 ↑ [(n2-7n+8)/2] < Bn < 2 ↑ [(n2-7n+10)/2] = Ḃn.

2.2. Formula for the minimum names 
In the same way, minn = Cn + Dn (Fig. 1):

Cn = 111 × 10 ↑ [1 + 2 + … + (n-2)] + 1011 × 10 ↑ [1 + 2 + … + (n-3)] =

= (102 + 10 + 1) × 10 ↑ [(n2-3n+2)/2] + (103 + 10 + 1) × 10 ↑ [(n2-5n+6)/2],

10 ↑ {[1 + 2 + … + (n-4)] + 4} < Dn < (10 + 1) × 10 ↑ {[1 + 2 + … + (n-4)] + 3}.

In the decimal form:

Cn = 7 × 2 ↑ [(n2-3n+2)/2] + 11 × 2 ↑ [(n2-5n+6)/2],

Ḍn = 2 ↑ [(n2-7n+20)/2] < Dn < 3 × 2 ↑ [(n2-7n+18)/2] = Ḋn.

3.3. Some relationships between the maximum and minimum names
The minn and maxn values for n = 4 to 12 and some relationships between 

them have been calculated (Table 1). The data allow us to express the hypotheses: 
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maxn+1/maxn ≈ 2n, where ≈ means ‘asymptotic to’, minn+1/maxn → 7 as n → ∞. 
Two other limits are not so obvious.

Table 1. The minn and maxn values for n = 4 to 12 
and some relationships between them.

4. Proofs of the hypotheses
Owing to rather complicated expressions for Bn and Dn, the main idea of the 

following calculations is to find the limits by means of lower and upper bounds of 
the appropriate values.
4.1. maxn+1/maxn ≈ 2n

To get maxn+1 we replace n by n+1 in the above formula for maxn:

maxn+1 = 2 ↑ [(n2-3n-2)/2] × (22n+1 – 1) + Bn+1 , where

Ḅn+1 = 2 ↑ [(n2-5n+2)/2] < Bn+1 < 2 ↑ [(n2-5n+4)/2] = Ḃn+1.

By using the lower and upper bounds for Bn and Bn+1 we get:

(An+1 + Ḅn+1) / (An + Ḃn) < maxn+1 / maxn < (An+1 + Ḃn+1) / (An + Ḅn).

By substituting the above values and passing to the limit we get:
2n ⪅ maxn+1 / maxn ⪅ 2n.

Hence, maxn+1 / maxn ≈ 2n.

4.2. minn+1 / minn ≈ 2n-1 + 11/7

To get minn+1 we replace n by n+1 in the above formula for minn:

minn+1 = 7 × 2 ↑ [(n2-n)/2] + 11 × 2 ↑ [(n2-3n+2)/2] + Dn+1 , where

Ḍn+1 = 2 ↑ [(n2-5n+14)/2] < Dn+1 < 3 × 2 ↑ [(n2-5n+12)/2] = Ḋn+1.

By using the lower and upper bounds for Dn and Dn+1 we get:

(Cn+1 + Ḍn+1) / (Cn + Ḋn) < minn+1 / minn < (Cn+1 + Ḋn+1) / (Cn + Ḍn).

By substituting the above values and passing to the limit we get:

2n-1 + 11/7 ⪅ maxn+1 / maxn ⪅ 2n-1 + 11/7.
Hence, maxn+1 / maxn ≈ 2n-1 + 11/7.
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4.3. minn+1 / maxn → 7
In the same way:

(Cn+1 + Ḍn+1) / (An + Ḃn) < minn+1 / maxn < (Cn+1 + Ḋn+1) / (An + Ḅn).

By substituting the above values and passing to the limit we get:

7 ≤ lim (minn+1 / maxn) ≤ 7.

Hence, lim (minn+1 / maxn) = 7.

4.4. maxn/minn ≈ 2n-1/7
In the same way:

(An + Ḅn) / (Cn + Ḋn) < maxn / minn < (An + Ḃn) / (Cn + Ḍn).

By substituting the above values and passing to the limit we get:

2n-1 / 7 ⪅ maxn / minn ⪅ 2n-1 / 7.

Hence, maxn / minn ≈ 2n-1 / 7.

Interpretation
The tendencies are easy to interpret at a logarithmic scale. The [lg 

minn, lg maxn] ranges are getting longer while the gap between them tends to 
lg 7 = 0.845… (Table 2, Fig. 2).

Table 2. The [lg minn, lg maxn] ranges for n = 4 to 12.

Conclusions
New results are obtained for the combinatorial variety of convex n-hedra 

(considered as n-acra) previously ordered by their digital names. The ranges [minn, 
maxn] rapidly scatter on a real line as n → ∞ in such a regular way that maxn+1/
maxn ≈ 2n (the ‘distance’ between the right ends of two nearby ranges), minn+1/
minn ≈ 2n-1 + 11/7 (the ‘distance’ between the left ends of two nearby ranges), 
minn+1/maxn → 7 (the ‘length’ of a gap between two nearby ranges), and maxn/
minn ≈ 2n-1/7 (the ‘length’ of a range). The obtained results characterize in detail 
the strict (without overlapping) ordering of the ranges on a real line.
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Figure 2. The [lg minn, lg maxn] ranges for n = 4 to 12 on a real line.
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Abstract
The topological entropy HS of all 2907 convex 4- to 9-vertex polyhedra has been 

calculated from the point of different symmetrical positions of the vertices. It shows a 
general trend to drop with growing symmetry of polyhedra with many local exceptions. 
The topological entropy HV of the same polyhedra has been calculated from the point 
of different valences of the vertices. It classifies the variety of polyhedra in more detail. 
The relationships between the HS and HV are discussed.

Synopsis
The paper discusses the relationships between the entropies HS and HV calculated 

for all 2907 convex 4- to 9-vertex polyhedra from the point of different symmetrical 
positions and valences of their vertices, respectively.

Key words
Convex polyhedra, automorphism group orders, symmetry point groups, valences, 

topological entropy.

1. Introduction
A general theory of convex polyhedra is given in (Grünbaum, 1967). In the 

series of papers we consider a special problem on the combinatorial variety of 
convex n-hedra rapidly growing with n. In Voytekhovsky & Stepenshchikov 
(2008) and Voytekhovsky (2014) all combinatorial types of convex 4- to 12-hedra 
and simple (only 3 facets / edges meet at each vertex) 13- to 16-hedra have been 
enumerated and characterized by automorphism group orders (a.g.o.’s) and 
symmetry point groups (s.p.g.’s). Asymptotically, almost all n-hedra (and n-acra, 
i.e. n-vertex polyhedra, because of duality) seem to be combinatorially asymmetric 
(i.e. primitive triclinic). A method of naming any convex n-acron by a numerical 
code arising from the adjacency matrix of its edge graph has been suggested in 
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