matrices of 8- to 11-acra corresponding to their min. names are in Fig. 4. (Note that they differ in one 1 for odd and even n).

4. Conclusions

The min. names are attainable for pyramidal convex n-acra with the following combinatorial s.p.g.: $-43 m$ for $n=4$ (tetrahedron), $(\mathrm{n}-1) m m$ for odd $\mathrm{n}>$ 4 and ($\mathrm{n}-1$) m for even $\mathrm{n}>4$. The max. names are attained for convex n -acra of a «glued tetrahedrons» type with the following combinatorial s.p.g.: $-43 m$ for $\mathrm{n}=4$ (tetrahedron), $-6 m 2$ for $\mathrm{n}=5$ (trigonal bipyramid) and $m m 2$ for $\mathrm{n}>5$.

The above results allow us to directly calculate ranges of names [$\min _{n}, \max _{n}$] for any n without generating the whole combinatorial variety of convex n -acra (ex., by the routine recurrence Fedorov algorithm) and calculating names for all of them. The ranges of names for $n=4$ to 12 are as follows: [63, 63], [507, 1022], [7915, 32754], [241483, 2096914], [15062603, 268427538], [1902830667, 68718960914], [484034528331, 35184305512722], [247052243600459, 36028779906736402], [252590061511541835, 73786967515992695058].

All the names of the ranges $\left[\max _{\mathrm{n}}+1, \min _{\mathrm{n}+1}-1\right]$ (ex., $[64,506],[1023$, 7914], [32755, 241482], etc.) obviously correspond to the adjacency matrices of non-polyhedral graphs. This sufficient but not necessary criterion seems to be new.

Acknowledgements

The author is grateful to the unknown referee for the highly skilled comments.

References

1. Ctrl+ZGrünbaum, B. (1967). Convex Polytopes. New York: Springer.
2. Voytekhovsky, Y. L. (2014). J. Struct. Chemistry. 55, 7, 1293-1307.
3. Voytekhovsky, Y. L. (2016). Acta Cryst, A72, 582-585.
4. Voytekhovsky, Y. L. (2017). Acta Cryst, A73, 77-80.
5. Voytekhovsky, Y. L. \& Stepenshchikov, D. G. (2006). Acta Cryst, A62, 230-232.

ETUDES ON CONVEX POLYHEDRA.
 4. ACCELERATED SCATTERING OF CONVEX POLYHEDRA

Yury L. Voytekhovsky

Geological Institute of the Kola Science Centre, Russian Academy of Sciences 14 Fersman Street, 184209, Apatity, Russia. Correspondence e-mail: woyt@geoksc.apatity.ru

Abstract

The formulas for the minimum $\left(\min _{n}\right)$ and maximum $\left(\max _{n}\right)$ names in the classes of convex n -acra (i.e. n -vertex polyhedra) are found for any n . The asymptotic behavior (as $\mathrm{n} \rightarrow \infty$) for $\max _{\mathrm{n}+1} / \max _{\mathrm{n}}, \min _{\mathrm{n}+1} / \min _{\mathrm{n}}, \min _{\mathrm{n}+1} / \max _{\mathrm{n}}$, and $\max _{\mathrm{n}} / \min _{\mathrm{n}}$ is established. They characterize in detail the accelerated scattering of [$\left.\min _{n}, \max _{n}\right]$ ranges on a real line.

Synopsis

The formulas for $\min _{\mathrm{n}}$ and $\max _{\mathrm{n}}$ names in the classes of convex n -acra, as well as asymptotic relationships (as $n \rightarrow \infty$) between them, are found. These explain the distribution of $\left[\min _{n}, \max _{\mathrm{n}}\right]$ ranges on the real line.
Key words
Convex polyhedra and polyacra, minimum and maximum names, asymptotic relationships.

1. Introduction

A general theory of convex polyhedra is given in (Grünbaum, 1967). In a series of papers we considered a special problem on the combinatorial variety of convex n-hedra rapidly growing with n. A method of naming any convex n-acron by a numerical code arising from the adjacency matrix of its edge graph has been suggested by Voytekhovsky (2016). It has also been proved that the [$\min _{\mathrm{n}}, \max _{\mathrm{n}}$] ranges of names for the classes of convex n-acra are strictly (without overlapping) ordered. The combinatorial types of convex n-acra with the $\min _{n}$ and $\max _{n}$ names (of pyramidal and 'glued tetrahedra' types, respectively) have been found for any n by Voytekhovsky (2017). In this paper, the latter are calculated from the adjacency matrices of their edge graphs. Afterwards, some asymptotic (as $n \rightarrow \infty$) relationships between the $\min _{\mathrm{n}}$ and $\max _{\mathrm{n}}$ names are found. They explain in detail the distribution of $\left[\min _{n}, \max _{\mathrm{n}}\right]$ ranges on a real line.

2. Maximum and minimum names of convex \mathbf{n}-acra

Figure 1. Decomposition of the adjacency matrices (upper triangles are shown) corresponding to max. (top) and min. (bottom) names of 11-acra.

The adjacency matrices of n-acra with $\min _{n}$ and $\max _{\mathrm{n}}$ names have been found by Voytekhovsky (2017, Figs 1, 3). Here, to find the names in an explicit algebraical form, we decompose the matrices into A, B, and C, D blocks (Fig. 1).

Exactly, in a general case, matrix A consists of the first three rows of the original adjacency matrix with 0 's in other positions while B is the original adjacency matrix minus A. In the same way, matrix C consists of the first two rows of the original adjacency matrix with 0 's in other positions while D is the original adjacency matrix minus C. Such decompositions (after many variants were checked) allowed us to find the $\min _{\mathrm{n}}$ and $\max _{\mathrm{n}}$ names of n -acra in an explicit form and, moreover, to prove some relationships between them.

2.1. Formula for the maximum names

For rather big n (for which the adjacency matrices of the n -acra correspond to Fig. 1), $\max _{n}=A_{n}+B_{n}$, where A_{n} and B_{n} can be found by using the properties of arithmetic and geometric progressions:

$$
\begin{gathered}
\mathrm{A}_{\mathrm{n}}=10 \uparrow\{[1+2+\ldots+(\mathrm{n}-3)]-2\} \times\left(1+10^{1}+\ldots+10^{2 \mathrm{n}-2}\right)= \\
=10 \uparrow\left[\left(\mathrm{n}^{2}-5 \mathrm{n}+2\right) / 2\right] \times\left(10^{2 \mathrm{n}-1}-1\right) /(10-1), \\
\mathrm{B}_{\mathrm{n}}=10^{1}+10^{4}+\ldots+10 \uparrow\{[1+2+\ldots+(\mathrm{n}-4)]-2\}= \\
=10^{1}+10^{4}+\ldots+10 \uparrow\left[\left(\mathrm{n}^{2}-7 \mathrm{n}+8\right) / 2\right] .
\end{gathered}
$$

It is easier to find the bounds for B_{n} than its explicit algebraic form. In the decimal form, replacing 10 by 2 :

$$
\begin{gathered}
\max _{\mathrm{n}}=2 \uparrow\left[\left(\mathrm{n}^{2}-5 \mathrm{n}+2\right) / 2\right] \times\left(2^{2 \mathrm{n}-1}-1\right)+\mathrm{B}_{\mathrm{n}}, \text { where } \\
\mathbf{B}_{\mathrm{n}}=2 \uparrow\left[\left(\mathrm{n}^{2}-7 \mathrm{n}+8\right) / 2\right]<\mathrm{B}_{\mathrm{n}}<2 \uparrow\left[\left(\mathrm{n}^{2}-7 \mathrm{n}+10\right) / 2\right]=\dot{\mathbf{B}}_{\mathrm{n}} .
\end{gathered}
$$

2.2. Formula for the minimum names

In the same way, $\min _{n}=C_{n}+D_{n}$ (Fig. 1):

$$
\begin{gathered}
\mathrm{C}_{\mathrm{n}}=111 \times 10 \uparrow[1+2+\ldots+(\mathrm{n}-2)]+1011 \times 10 \uparrow[1+2+\ldots+(\mathrm{n}-3)]= \\
=\left(10^{2}+10+1\right) \times 10 \uparrow\left[\left(\mathrm{n}^{2}-3 \mathrm{n}+2\right) / 2\right]+\left(10^{3}+10+1\right) \times 10 \uparrow\left[\left(\mathrm{n}^{2}-5 \mathrm{n}+6\right) / 2\right], \\
10 \uparrow\{[1+2+\ldots+(\mathrm{n}-4)]+4\}<\mathrm{D}_{\mathrm{n}}<(10+1) \times 10 \uparrow\{[1+2+\ldots+(\mathrm{n}-4)]+3\} .
\end{gathered}
$$

In the decimal form:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{n}}=7 \times 2 \uparrow\left[\left(\mathrm{n}^{2}-3 \mathrm{n}+2\right) / 2\right]+11 \times 2 \uparrow\left[\left(\mathrm{n}^{2}-5 \mathrm{n}+6\right) / 2\right], \\
\mathbf{D}_{\mathrm{n}}=2 \uparrow\left[\left(\mathrm{n}^{2}-7 \mathrm{n}+20\right) / 2\right]<\mathrm{D}_{\mathrm{n}}<3 \times 2 \uparrow\left[\left(\mathrm{n}^{2}-7 \mathrm{n}+18\right) / 2\right]=\dot{\mathbf{D}}_{\mathrm{n}} .
\end{gathered}
$$

3.3. Some relationships between the maximum and minimum names

The $\min _{\mathrm{n}}$ and $\max _{\mathrm{n}}$ values for $\mathrm{n}=4$ to 12 and some relationships between them have been calculated (Table 1). The data allow us to express the hypotheses:
$\max _{\mathrm{n}+1} / \max _{\mathrm{n}} \approx 2^{\mathrm{n}}$, where \approx means 'asymptotic to', $\min _{\mathrm{n}+1} / \max _{\mathrm{n}} \rightarrow 7$ as $\mathrm{n} \rightarrow \infty$. Two other limits are not so obvious.

Table 1. The $\min _{\mathrm{n}}$ and $\max _{\mathrm{n}}$ values for $\mathrm{n}=4$ to 12 and some relationships between them.

\mathbf{n}	$\left[\min _{\mathrm{n}}, \max _{\mathrm{n}}\right]$	$\max _{\mathrm{n}+1} / \max _{\mathrm{n}}$	$\min _{\mathrm{n}+1} / \min _{\mathrm{n}}$	$\min _{\mathrm{n}+1} / \mathrm{max}_{\mathrm{n}}$	$\max _{\mathrm{n}} / \min _{\mathrm{n}}$
4	$[63,63]$	$16.22222 \ldots$	$8.04761 \ldots$	$8.04761 \ldots$	1
5	$[507,1022]$	$32.04892 \ldots$	$15.61143 \ldots$	$7.74461 \ldots$	$2.01577 \ldots$
6	$[7915,32754]$	$64.02008 \ldots$	$30.50953 \ldots$	$7.37262 \ldots$	$4.13821 \ldots$
7	$[241483,2096914]$	$128.01075 \ldots$	$62.37541 \ldots$	$7.18322 \ldots$	$8.68348 \ldots$
8	$[15062603,268427538]$	$256.00562 \ldots$	$126.32814 \ldots$	$7.08880 \ldots$	$17.82079 \ldots$
9	$[1902830667,68718960914]$	$512.00287 \ldots$	$254.37603 \ldots$	$7.04368 \ldots$	$36.11407 \ldots$
10	$[484034528331,35184305512722]$	$1024.00145 \ldots$	$510.40210 \ldots$	$7.02166 \ldots$	$72.68966 \ldots$
11	$[247052243600459,36028779906736402]$	$2048.00072 \ldots$	$1022.41557 \ldots$	$7.01078 \ldots$	$145.83465 \ldots$
12	$[252590061511541835,73786967515992695058]$	-	-	-	$292.12142 \ldots$
	Hypotheses	2^{n}	$?$	7	$?$

4. Proofs of the hypotheses

Owing to rather complicated expressions for B_{n} and D_{n}, the main idea of the following calculations is to find the limits by means of lower and upper bounds of the appropriate values.

4.1. $\max _{\mathrm{n}+1} / \max _{\mathrm{n}} \approx \mathbf{2}^{\mathrm{n}}$

To get $\max _{\mathrm{n}+1}$ we replace n by $\mathrm{n}+1$ in the above formula for $\max _{\mathrm{n}}$:

$$
\begin{gathered}
\max _{\mathrm{n}+1}=2 \uparrow\left[\left(\mathrm{n}^{2}-3 \mathrm{n}-2\right) / 2\right] \times\left(2^{2 \mathrm{n}+1}-1\right)+\mathrm{B}_{\mathrm{n}+1}, \text { where } \\
\mathbf{B}_{\mathrm{n}+1}=2 \uparrow\left[\left(\mathrm{n}^{2}-5 \mathrm{n}+2\right) / 2\right]<\mathrm{B}_{\mathrm{n}+1}<2 \uparrow\left[\left(\mathrm{n}^{2}-5 \mathrm{n}+4\right) / 2\right]=\dot{\mathbf{B}}_{\mathrm{n}+1} .
\end{gathered}
$$

By using the lower and upper bounds for B_{n} and B_{n+1} we get:

$$
\left(\mathrm{A}_{\mathrm{n}+1}+{\underset{\mathrm{B}}{\mathrm{n}+1}}\right) /\left(\mathrm{A}_{\mathrm{n}}+\dot{\mathbf{B}}_{\mathrm{n}}\right)<\max _{\mathrm{n}+1} / \max _{\mathrm{n}}<\left(\mathrm{A}_{\mathrm{n}+1}+\dot{\mathbf{B}}_{\mathrm{n}+1}\right) /\left(\mathrm{A}_{\mathrm{n}}+\mathbf{B}_{\mathrm{n}}\right) .
$$

By substituting the above values and passing to the limit we get:

$$
2 \mathrm{n} \lesssim \max n+1 / \operatorname{maxn} \lesssim 2 n
$$

Hence, $\max _{\mathrm{n}+1} / \max _{\mathrm{n}} \approx 2^{\mathrm{n}}$.

4.2. $\min _{\mathrm{n}+1} / \min _{\mathrm{n}} \approx 2^{\mathrm{n}-1}+11 / 7$

To get $\min _{n+1}$ we replace n by $n+1$ in the above formula for $\min _{n}$:

$$
\begin{gathered}
\min _{n+1}=7 \times 2 \uparrow\left[\left(n^{2}-n\right) / 2\right]+11 \times 2 \uparrow\left[\left(n^{2}-3 n+2\right) / 2\right]+D_{n+1}, \text { where } \\
\mathbf{D}_{\mathrm{n}+1}=2 \uparrow\left[\left(n^{2}-5 n+14\right) / 2\right]<D_{n+1}<3 \times 2 \uparrow\left[\left(n^{2}-5 n+12\right) / 2\right]=\dot{\mathbf{D}}_{n+1}
\end{gathered}
$$

By using the lower and upper bounds for D_{n} and D_{n+1} we get:

$$
\left(\mathrm{C}_{\mathrm{n}+1}+\mathbf{D}_{\mathrm{n}+1}\right) /\left(\mathrm{C}_{\mathrm{n}}+\dot{\mathbf{D}}_{\mathrm{n}}\right)<\min _{\mathrm{n}+1} / \min _{\mathrm{n}}<\left(\mathrm{C}_{\mathrm{n}+1}+\dot{\mathbf{D}}_{\mathrm{n}+1}\right) /\left(\mathrm{C}_{\mathrm{n}}+\mathbf{D}_{\mathrm{n}}\right)
$$

By substituting the above values and passing to the limit we get:

$$
2^{\mathrm{n}-1}+11 / 7 \lesssim \max _{\mathrm{n}+1} / \max _{\mathrm{n}} \lesssim 2^{\mathrm{n}-1}+11 / 7
$$

Hence, $\max _{\mathrm{n}+1} / \max _{\mathrm{n}} \approx 2^{\mathrm{n}-1}+11 / 7$.

4.3. $\min _{\mathrm{n}+1} / \max _{\mathrm{n}} \rightarrow 7$

In the same way:

$$
\left(\mathrm{C}_{\mathrm{n}+1}+\mathbf{D}_{\mathrm{n}+1}\right) /\left(\mathrm{A}_{\mathrm{n}}+\dot{\mathbf{B}}_{\mathrm{n}}\right)<\min _{\mathrm{n}+1} / \max _{\mathrm{n}}<\left(\mathrm{C}_{\mathrm{n}+1}+\dot{\mathbf{D}}_{\mathrm{n}+1}\right) /\left(\mathrm{A}_{\mathrm{n}}+{\underset{\underline{B}}{n}}\right) .
$$

By substituting the above values and passing to the limit we get:

$$
7 \leq \lim \left(\min _{n+1} / \max _{\mathrm{n}}\right) \leq 7 .
$$

Hence, $\lim \left(\min _{n+1} / \max _{\mathrm{n}}\right)=7$.

4.4. $\max _{\mathrm{n}} / \min _{\mathrm{n}} \approx 2^{\mathrm{n-1} / 7}$

In the same way:

$$
\left(\mathrm{A}_{\mathrm{n}}+\mathbf{B}_{\mathrm{n}}\right) /\left(\mathrm{C}_{\mathrm{n}}+\dot{\mathbf{D}}_{\mathrm{n}}\right)<\max _{\mathrm{n}} / \min _{\mathrm{n}}<\left(\mathrm{A}_{\mathrm{n}}+\dot{\mathbf{B}}_{\mathrm{n}}\right) /\left(\mathrm{C}_{\mathrm{n}}+\mathbf{D}_{\mathrm{n}}\right) .
$$

By substituting the above values and passing to the limit we get:

$$
2^{n-1} / 7 \lesssim \max _{n} / \min _{n} \lesssim 2^{n-1} / 7 .
$$

Hence, $\max _{\mathrm{n}} / \min _{\mathrm{n}} \approx 2^{\mathrm{n-1}} / 7$.

Interpretation

The tendencies are easy to interpret at a logarithmic scale. The $[\mathrm{lg}$ $\left.\min _{\mathrm{n}}, \lg \max _{\mathrm{n}}\right]$ ranges are getting longer while the gap between them tends to $\lg 7=0.845 \ldots$ (Table 2, Fig. 2).

Table 2. The $\left[\lg \min _{\mathrm{n}}, \lg \max _{\mathrm{n}}\right]$ ranges for $\mathrm{n}=4$ to 12 .

n	4	5	6	7	8	9	10	11	12
$\left[\lg \min _{\mathrm{n}}\right.$,	$[1.80$,	$[2.71$,	$[3.90$,	$[5.38$,	$[7.18$,	$[9.28$,	$[11.68$,	$[14.39$,	$[17.40$,
$\left.\lg \max _{\mathrm{n}}\right]$	$1.80]$	$3.01]$	$4.52]$	$6.32]$	$8.43]$	$10.84]$	$13.55]$	$16.56]$	$19.87]$

4	5	6	7	8	9

Figure 2. The $\left[\lg \min _{n}, \lg \max _{n}\right]$ ranges for $n=4$ to 12 on a real line.

Conclusions

New results are obtained for the combinatorial variety of convex n-hedra (considered as n -acra) previously ordered by their digital names. The ranges [$\mathrm{min}_{\mathrm{n}}$, $\max _{\mathrm{n}}$] rapidly scatter on a real line as $\mathrm{n} \rightarrow \infty$ in such a regular way that $\max _{\mathrm{n}+1} /$ $\max _{\mathrm{n}} \approx 2^{\mathrm{n}}$ (the 'distance' between the right ends of two nearby ranges), $\min _{\mathrm{n}+1} /$ $\min _{n} \approx 2^{n-1}+11 / 7$ (the 'distance' between the left ends of two nearby ranges), $\min _{\mathrm{n}+1} / \max _{\mathrm{n}} \rightarrow 7$ (the 'length' of a gap between two nearby ranges), and max ${ }_{\mathrm{n}} /$ $\min _{\mathrm{n}} \approx 2^{\mathrm{n}-1} / 7$ (the 'length' of a range). The obtained results characterize in detail the strict (without overlapping) ordering of the ranges on a real line.

Acknowledgements

The author is grateful to the unknown referee for the highly skilled comments.

References

1. Grünbaum, B. (1967). Convex Polytopes. New York: Springer.
2. Voytekhovsky, Y. L. (2016). Acta Cryst, A72, 582-585.
3. Voytekhovsky, Y. L. (2017). Acta Cryst, A73, 271-273.

ETUDES ON CONVEX POLYHEDRA.
 5. TOPOLOGICAL ENTROPIES OF ALL 2907 CONVEX 4- TO 9-VERTEX POLYHEDRA

https://doi.org/10.31241/MIEN.2018.14.05

Yury L. Voytekhovsky

Geological Institute of the Kola Science Centre, Russian Academy of Sciences 14 Fersman Street, 184209, Apatity, Russia. Correspondence e-mail: woyt@geoksc.apatity.ru

Abstract

The topological entropy H_{S} of all 2907 convex 4 - to 9 -vertex polyhedra has been calculated from the point of different symmetrical positions of the vertices. It shows a general trend to drop with growing symmetry of polyhedra with many local exceptions. The topological entropy H_{V} of the same polyhedra has been calculated from the point of different valences of the vertices. It classifies the variety of polyhedra in more detail. The relationships between the H_{s} and H_{V} are discussed.

Synopsis

The paper discusses the relationships between the entropies H_{S} and H_{v} calculated for all 2907 convex 4 - to 9 -vertex polyhedra from the point of different symmetrical positions and valences of their vertices, respectively.

Key words

Convex polyhedra, automorphism group orders, symmetry point groups, valences, topological entropy.

1. Introduction

A general theory of convex polyhedra is given in (Grünbaum, 1967). In the series of papers we consider a special problem on the combinatorial variety of convex n-hedra rapidly growing with n. In Voytekhovsky \& Stepenshchikov (2008) and Voytekhovsky (2014) all combinatorial types of convex 4- to 12-hedra and simple (only 3 facets / edges meet at each vertex) 13- to 16-hedra have been enumerated and characterized by automorphism group orders (a.g.o.'s) and symmetry point groups (s.p.g.'s). Asymptotically, almost all n-hedra (and n-acra, i.e. n-vertex polyhedra, because of duality) seem to be combinatorially asymmetric (i.e. primitive triclinic). A method of naming any convex n-acron by a numerical code arising from the adjacency matrix of its edge graph has been suggested in

