ГЕОХИМИЯ РЕДКИХ ЭЛЕМЕНТОВ (LA-ICP-MS) В МОНАЦИТЕ ИЗ РУДОПРОЯВЛЕНИЯ ИЧЕТЪЮ, СРЕДНИЙ ТИМАН

Скублов С.Г.^{1,2}, Красоткина А.О.², Макеев А.Б.³, Томсен Т.Б.⁴, Серре С.Х.⁴, Абдрахманов И.А.²

¹ Институт геологии и геохронологии докембрия РАН, Санкт-Петербург, skublov@yandex.ru ² Горный университет, Санкт-Петербург

³ Институт геологии рудных месторождений, петрографии, минералогии и геохимии, Москва, abmakeev@mail.ru

⁴ Геологическая служба Дании и Гренландии, Копенгаген, Дания

Пижемское месторождение титана и полиминеральное проявление Ичетью, расположенные на Среднем Тимане, в перспективе могут быть крайне востребованными как в отношении гигантских ресурсов титана и кварцевых песчаников стекольного качества, так и в возможном расширении перечня перспективных полезных компонентов (редкие металлы – Y, Zr, Nb, REE, алмазы и др.) [5 и др.]. Полиминеральное алмаз-золото-редкометалльно-редкоземельно-титановое рудопроявление Ичетью представляет собой горизонт конглобрекчиевых пород со сложной пятнистоструйчато-линзовидной морфологией тел и выдержанной мощностью от 0.2 до 1.5 м. Породы рудопроявления представлены светло-серыми кварцевыми песчаниками, гравелитами, конгломератами и конглобрекчиями, залегающими между двумя мощными толщами в основании пижемских мономинеральных кварцевых песчаников стекольного качества и выше ильменит-лейкоксен-кварцевой малоручейской титаноносной толщи Пижемского месторождения Среднего Тимана. Породы рудопроявления Ичетью отличаются разнообразием минерального состава: диагностировано более 50 минералов, главные из которых: кварц, рутил, анатаз, ниобиевый рутил, ильменит, циркон, монацит, колумбит, гранаты, хромшпинелиды, турмалин, ставролит, золото с примесью серебра, кривогранные алмазы уральско-бразильского типа [4].

Проведено исследование геохимии монацита из 19 шлиховых проб, отобранных из пород рудопроявления Ичетью в бассейне рек Пижма, Умба и Средняя.

Аналитическая методика

Предварительное исследование состава монацита, зерна которого были смонтированы в эпоксидной смоле в стандартных шайбах, проведено методом SEM-EDS (JEOL JSM-6510LA с энергодисперсионной приставкой JED-2200) в ИГГД РАН. Содержание 30 редких элементов определено методом LA-ICP-MS в лаборатории Геологической службы Дании и Гренландии (GEUS). Использовался NWR213 Nd:YAG лазерная система, соединенная с масс-спектрометром ELEMENT 2. Кратер диаметром около 40 мкм ставился в центре зерна в место, свободное от микровключений и трещин. Стекла NIST 612 и 614 и монацит-стандарт Bananeira использовались для оценки качества определения содержания редких элементов. В итоге было проанализировано 84 зерна монацита, средний состав которых приведен в таблице.

Результаты

Практически в каждой пробе выделено две разновидности монацита, достигающего в поперечнике 1–2 мм. Преобладает непрозрачный серый (до черного) глобулярный монацит, неодимцериевый по составу. Зерна этого типа линзовидные, со следами растворения и замещения. Высокая степень окатанности зерен свидетельствует о дальности их переноса. Характерно замещение порового пространства кварцем и флоренситом [3]. В отечественной литературе монацит с такими характеристиками называют куларитом [2, 6], однако, за рубежом этот термин не получил распространения и в настоящее время не используется.

Монацит обычного желтоватого оттенка представлен в подчиненном количестве, по составу он лантан-цериевый. Удлиненные кристаллы характеризуются однородным монолитным внутренним строением, а их относительно хорошая сохранность свидетельствует о близком коренном источнике [3].

Эле-	Куларит (серый монацит) (n = 58)					Желтый монацит (n = 26)				
мент	median	mean	sd	min	max	median	mean	sd	min	max
Al	10250	10639	5146	2600	34000	0.13	9.71	18.9	b.d.l.	81.0
Si	19500	23006	12717	8990	71000	143	261	488	b.d.l.	2310
Ca	14950	16548	6482	3940	34000	9695	10621	6884	1455	33400
Ti	2800	2802	1259	550	6100	0.23	0.37	0.42	b.d.l.	1.40
Mn	12.3	20.3	19.0	4.03	96.0	0.55	2.14	4.04	b.d.l.	19.3
Fe	6665	11904	12685	2190	60200	45.5	289	594	b.d.l.	2850
Rb	21.1	22.8	11.5	4.00	69.0	0.22	0.22	0.13	0.02	0.49
Sr	2260	2407	886	672	4910	1890	1948	1296	209	6640
Y	6565	6495	686	4810	7780	1026	1176	909	79.9	3090
Zr	63.5	64.9	17.2	34.9	104	0.24	0.37	0.40	b.d.l.	1.28
Nb	19.0	24.2	18.3	6.70	98.0	0.15	0.17	0.12	0.02	0.38
Ва	113	122	51.2	42.8	290	29.0	43.7	44.8	1.81	176
La	73100	82010	33660	32900	201000	203300	203615	47951	95800	324000
Ce	234500	231248	35750	134400	321000	260500	266127	22132	227000	308000
Pr	38800	38286	3176	31100	44400	23350	25269	5492	19100	38600
Nd	198950	197622	34736	108600	275000	79850	86077	28733	52100	157100
Sm	45700	48125	20550	13200	99300	5210	7352	5574	2500	23990
Eu	7295	7236	2830	2070	13970	951	1357	1191	368	5950
Gd	22600	22109	7908	7410	38200	1683	2818	2986	709	12900
Tb	1555	1526	358	820	2300	103	186	214	38.6	964
Dy	4150	4108	622	2920	5440	351	529	547	65.7	2590
Но	333	334	39.7	249	418	44.3	52.8	43.4	4.15	177
Er	424	409	49.0	299	495	65.5	82.3	60.8	14.1	220
Tm	27.5	26.5	3.95	18.2	35.1	3.66	5.77	5.07	0.25	18.9
Yb	98.9	95.5	18.6	55.7	150	11.6	20.1	18.5	1.17	71.0
Lu	6.52	6.64	1.66	3.87	14.0	0.73	1.28	1.22	0.07	4.50
Hf	2.59	2.87	1.01	1.62	8.30	0.03	0.04	0.03	b.d.l.	0.12
Pb	518	578	284	174	1680	143	192	232	12.7	1110
Th	5550	6186	2898	1630	13600	3490	4794	5783	360	27400
U	1364	1324	505	160	2700	1.47	3.59	6.39	0.01	26.5

Таблица. Обобщенная характеристика состава монацита из проявления Ичетью.

Примечание: содержание элементов приведено в ppm; b.d.l. –ниже порога чувствительности.

На тройной диаграмме La-Ce-Nd точки составов монацита образуют единый тренд, выпуклый к вершине Ce (рис. 1, а). Из трех сравниваемых LREE для большинства зерен максимальное содержание (около 50 отн.%) установлено для Ce, причем это характерно в большей степени для желтого монацита. В некоторых зернах куларита содержание Nd превышает 50 отн.%. В желтом монаците относительное содержание La не достигает 50 отн.%. Спектры распределения REE в монаците из рудопроявления Ичетью отличаются высокой степенью дифференцированности в области HREE, в большей степени проявленной для желтого монацита. В куларите спектры распределения в области LREE практически горизонтальны (рис. 1, б). В желтом монаците Eu-аномалия не проявлена (Eu/Eu* в среднем 0.93), а содержание почти всех REE (за исключением La и Ce) меньше, чем в куларите. Содержание Ce примерно совпадает для обеих разновидностей монацита. В куларите проявлена слабая отрицательная Eu-аномалия (Eu/Eu* в среднем 0.68). Для куларита установлено «сгущение» спектров распределения REE, в отличие от желтого монацита, в котором содержание HREE заметно варьирует.

Характерной особенностью монацита из рудопроявления Ичетью является крайне низкое содержание Th, для большинства зерен не превышающее 1 мас. %. В желтом монаците содержание Th в целом меньше, чем в куларите (рис. 1, в).

Содержание U в желтом монаците экстремально низкое, для большинства зерен оно находится в интервале 0.1–10 ppm. В куларите среднее содержание U составляет около 1300 ppm (таблица).

Рис. 1. Состав монацита (черными значками показан куларит, красными значками – желтый монацит). Содержание REE в монаците (на рис. 1, б) нормировано на состав хондрита CI [8].

Соответственно, Th/U отношение для желтого монацита гораздо выше (минимальное значение составляет 129, максимальное – 62153), чем у куларита (Th/U отношение варьирует от 0.64 до 26.35 при среднем значении около 5). Поля составов куларита и желтого монацита на диаграмме Th-U (рис. 1, в) не пересекаются, область точек составов куларита отличается большей компактностью, чем в случае с желтым монацитом. Желтый монацит, по сравнению с куларитом, характеризуется пониженным содержанием практически всех элементов, за исключением La и Ce. Для большинства редких элементов точки куларита и желтого монацита не пересекаются на диаграммах (рис. 1, г–е), а поля составов куларита отличаются компактностью по сравнению с желтым монацитом.

Главным вопросом является генезис рассматриваемого монацита. В первую очередь, по крайне низкому содержанию Th, а также другим геохимическим признакам – пониженному содержанию ряда редких элементов, отсутствию заметной отрицательной Eu-аномалии, и куларит, и желтый монацит относятся к гидротермальному монациту [10]. Рядом исследователей [9 и др.] куларит рассматривается не как аутигенный минерал россыпей, а как результат перекристаллизации монацита из иных источников под воздействием флюида. Установлено, что под воздействием флюида при температурах около 300°C и ниже происходит образование вторичной гидротермальной генерации монацита и некоторым повышением в нем содержания La, Ce и Nd при значительном понижении – Th, U, Y, Pb и Si [11]. Описаны случаи, когда флюид в условиях зеленосланцевой фации приводит к значительному перераспределению Y и REE из монацита в сосуществующий апатит [7]. Для куларита из рудопроявления Ичетью (карьер у скалы Золотой Камень) была установлена зональность, заключающаяся в повышении от центра зерна к краю содержания La и Ce и понижении – Nd [1]. Подобная зональность может быть объяснена различной подвижностью и фракционированием REE в процессе их взаимодействия с гидротермальными растворами.

Таким образом, для рудопроявления Ичетью установлены два типа гидротермального монацита, отличающихся по составу и, вероятно, возрасту: La-Ce монацит желтого цвета и Nd-Ce куларит (серый монацит). Последний участвовал в процессе лейкоксенизации ильменита (возможно, они с ильменитом составляли единую первичную минеральную ассоциацию). В процессе перемещения к поверхности два типа монацита были совмещены и теперь составляют единую минеральную ассоциацию в алмазоносных конглобрекчиях рудопроявления Ичетью.

Литература

- Колонин Г.Р., Широносова Г.П., Швецова И.В. Зональное распределение главных РЗЭ в метаморфогенном монаците (куларите) и возможности термодинамической оценки условий его образования // Вестник Отделения наук о Земле РАН. 2009. № 1 (27).
- 2. Кременецкий А.А. Новый геолого-промышленный тип редкоземельных россыпей // Разведка и охрана недр. 1993. № 3. С. 15-19.
- 3. Макеев А.Б., Вирюс А.А. Монацит проявления Ичетъю (состав, морфология, возраст) // Известия высших учебных заведений. Геология и разведка. 2013. № 3. С. 10-15.
- 4. Макеев А.Б., Дудар В.А. Минералогия алмазов Тимана. СПб.: Наука. 2001. 336 с.
- 5. Макеев А.Б., Скублов С.Г. Иттриево-редкоземельные цирконы Тимана: геохимия и промышленное значение // Геохимия. 2016. № 9. С. 821-828.
- 6. Некрасов И.Я., Некрасова Р.А. Куларит аутигенная разновидность монацита // Докл. АН СССР. 1983. Т. 268. № 3. С. 688-693.
- Harlov D.E., Andersson U.B., Förster H.J., Nyström J.O., Dulski P., Broman C. Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden // Chemical Geology. 2002. V. 191. P. 47-72.
- 8. McDonough W.F., Sun S.S. The composition of the Earth // Chemical Geology. 1995. V. 120. P. 223-253.
- 9. Read D., Cooper D.C. McArthur J.M. The composition and distribution of nodular monazite in the Lower Palaeozoic rocks of Great Britain // Mineralogical Magazine. 1987. V. 51. P. 271-280.
- Schandl E.S., Gorton M.P. A textural and geochemical guide to the identification of hydrothermal monazite: criteria for selection of samples for dating epigenetic hydrothermal ore deposits // Economic Geology. 2004. V. 99. P. 1027-1035.
- Seydoux-Guillaume A.M., Montel J.M., Bingen B., Bosse V., De Parseval P., Paquette J.L., Janots E., Wirth R. Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers // Chemical Geology. 2012. V. 330. P. 140-158.